100 research outputs found

    Histogram-based models on non-thin section chest CT predict invasiveness of primary lung adenocarcinoma subsolid nodules.

    Get PDF
    109 pathologically proven subsolid nodules (SSN) were segmented by 2 readers on non-thin section chest CT with a lung nodule analysis software followed by extraction of CT attenuation histogram and geometric features. Functional data analysis of histograms provided data driven features (FPC1,2,3) used in further model building. Nodules were classified as pre-invasive (P1, atypical adenomatous hyperplasia and adenocarcinoma in situ), minimally invasive (P2) and invasive adenocarcinomas (P3). P1 and P2 were grouped together (T1) versus P3 (T2). Various combinations of features were compared in predictive models for binary nodule classification (T1/T2), using multiple logistic regression and non-linear classifiers. Area under ROC curve (AUC) was used as diagnostic performance criteria. Inter-reader variability was assessed using Cohen's Kappa and intra-class coefficient (ICC). Three models predicting invasiveness of SSN were selected based on AUC. First model included 87.5 percentile of CT lesion attenuation (Q.875), interquartile range (IQR), volume and maximum/minimum diameter ratio (AUC:0.89, 95%CI:[0.75 1]). Second model included FPC1, volume and diameter ratio (AUC:0.91, 95%CI:[0.77 1]). Third model included FPC1, FPC2 and volume (AUC:0.89, 95%CI:[0.73 1]). Inter-reader variability was excellent (Kappa:0.95, ICC:0.98). Parsimonious models using histogram and geometric features differentiated invasive from minimally invasive/pre-invasive SSN with good predictive performance in non-thin section CT

    State of the art: iterative CT reconstruction techniques

    Get PDF
    Owing to recent advances in computing power, iterative reconstruction (IR) algorithms have become a clinically viable option in computed tomographic (CT) imaging. Substantial evidence is accumulating about the advantages of IR algorithms over established analytical methods, such as filtered back projection. IR improves image quality through cyclic image processing. Although all available solutions share the common mechanism of artifact reduction and/or potential for radiation dose savings, chiefly due to image noise suppression, the magnitude of these effects depends on the specific IR algorithm. In the first section of this contribution, the technical bases of IR are briefly reviewed and the currently available algorithms released by the major CT manufacturers are described. In the second part, the current status of their clinical implementation is surveyed. Regardless of the applied IR algorithm, the available evidence attests to the substantial potential of IR algorithms for overcoming traditional limitations in CT imaging

    Evaluation of etoricoxib in patients undergoing total knee replacement surgery in a double-blind, randomized controlled trial.

    Get PDF
    BACKGROUND: Optimal postoperative pain management is important to ensure patient comfort and early mobilization. METHODS: In this double-blind, placebo- and active-controlled, randomized clinical trial, we evaluated postoperative pain following knee replacement in patients receiving placebo, etoricoxib (90 or 120 mg), or ibuprofen 1800 mg daily for 7 days. Patients \u3e=18 years of age who had pain at rest \u3e=5 (0--10 Numerical Rating Scale [NRS]) after unilateral total knee replacement were randomly assigned to placebo (N = 98), etoricoxib 90 mg (N = 224), etoricoxib 120 mg (N = 230), or ibuprofen 1800 mg (N = 224) postoperatively. Co-primary endpoints included Average Pain Intensity Difference at Rest over Days 1--3 (0- to 10-point NRS) and Average Total Daily Dose of Morphine over Days 1--3. Pain upon movement was evaluated using Average Pain Intensity Difference upon Knee Flexion (0- to 10-point NRS). The primary objective was to demonstrate analgesic superiority for the etoricoxib doses vs. placebo; the secondary objective was to demonstrate that the analgesic effect of the etoricoxib doses was non-inferior to ibuprofen. Adverse experiences (AEs) including opioid-related AEs were evaluated. RESULTS: The least squares (LS) mean (95% CI) differences from placebo for Pain Intensity Difference at Rest over Days 1--3 were -0.54 (-0.95, -0.14); -0.49 (-0.89, -0.08); and -0.45 (-0.85, -0.04) for etoricoxib 90 mg, etoricoxib 120 mg, and ibuprofen, respectively (p \u3c 0.05 for etoricoxib vs. placebo). Differences in LS Geometric Mean Ratio morphine use over Days 1--3 from placebo were 0.66 (0.54, 0.82); 0.69 (0.56, 0.85); and 0.66 (0.53, 0.81) for etoricoxib 90 mg, etoricoxib 120 mg, and ibuprofen, respectively (p \u3c 0.001 for etoricoxib vs. placebo). Differences in LS Mean Pain Intensity upon Knee Flexion were -0.37 (-0.85, 0.11); -0.46 (-0.94, 0.01); and -0.42 (-0.90, 0.06) for etoricoxib 90 mg, etoricoxib 120 mg, and ibuprofen, respectively. Opioid-related AEs occurred in 41.8%, 34.7%, 36.5%, and 36.3% of patients on placebo, etoricoxib 90 mg, etoricoxib 120 mg, and ibuprofen, respectively. CONCLUSIONS: Postoperative use of etoricoxib 90 and 120 mg in patients undergoing total knee replacement is both superior to placebo and non-inferior to ibuprofen in reducing pain at rest and also reduces opioid (morphine) consumption.Clinical trial registration: NCT00820027

    Long term (5 Year) safety of bronchial thermoplasty: Asthma Intervention Research (AIR) trial

    Get PDF
    <b>Background:</b> Bronchial thermoplasty (BT) is a bronchoscopic procedure that improves asthma control by reducing excess airway smooth muscle. Treated patients have been followed out to 5 years to evaluate long-term safety of this procedure. <br></br> <br></br> <b>Methods:</b> Patients enrolled in the Asthma Intervention Research Trial were on inhaled corticosteroids ≥200 μg beclomethasone or equivalent + long-acting-beta2-agonists and demonstrated worsening of asthma on long-acting-β2-agonist withdrawal. Following initial evaluation at 1 year, subjects were invited to participate in a 4 year safety study. Adverse events (AEs) and spirometry data were used to assess long-term safety out to 5 years post-BT. <br></br> <br></br> <b>Results:</b> 45 of 52 treated and 24 of 49 control group subjects participated in long-term follow-up of 5 years and 3 years respectively. The rate of respiratory adverse events (AEs/subject) was stable in years 2 to 5 following BT (1.2, 1.3, 1.2, and 1.1, respectively,). There was no increase in hospitalizations or emergency room visits for respiratory symptoms in Years 2, 3, 4, and 5 compared to Year 1. The FVC and FEV1 values showed no deterioration over the 5 year period in the BT group. Similar results were obtained for the Control group. <br></br><br></br> <b>Conclusions:</b> The absence of clinical complications (based on AE reporting) and the maintenance of stable lung function (no deterioration of FVC and FEV1) over a 5-year period post-BT in this group of patients with moderate to severe asthma support the long-term safety of the procedure out to 5 years

    Enhanced pneumothorax visualization in ICU patients using portable chest radiography

    Get PDF
    Objective Pneumothorax development can cause precipitous deterioration in ICU patients, therefore quick and accurate detection is vital. Portable chest radiography is commonly performed to exclude pneumothoraces but is hampered by supine patient position and overlying internal and external material. Also, the initial evaluation of the chest radiograph may be performed by a relatively inexperienced physician. Therefore, a tool that could significantly improve pneumothorax detection on portable radiography would be helpful in patient care. The aim of this study was to evaluate the clinical utility of novel enhancement software for pneumothorax detection in readers with varied clinical experience of detecting/excluding pneumothoraces on portable chest radiographs in ICU patients. Subjects and methods 206 portable ICU chest radiographs, 103 with pneumothoraces, were processed with and without enhancement software and reviewed by 5 readers who varied in reading experience. Images were grouped for different complexity levels. Results The mean AUC for pneumothorax detection increased for 4/5 readers from 0.846-0.957 to 0.88-0.971 with a largest improvement for the reader with least experience. No significant change was noted for the reader with the longest reading experience. The image complexity had no impact on the interpretation result. Conclusion Pneumothorax detection improves with novel enhancement software;the largest improvement is seen in less experienced readers

    Association of Cardiometabolic Multimorbidity With Mortality.

    Get PDF
    IMPORTANCE: The prevalence of cardiometabolic multimorbidity is increasing. OBJECTIVE: To estimate reductions in life expectancy associated with cardiometabolic multimorbidity. DESIGN, SETTING, AND PARTICIPANTS: Age- and sex-adjusted mortality rates and hazard ratios (HRs) were calculated using individual participant data from the Emerging Risk Factors Collaboration (689,300 participants; 91 cohorts; years of baseline surveys: 1960-2007; latest mortality follow-up: April 2013; 128,843 deaths). The HRs from the Emerging Risk Factors Collaboration were compared with those from the UK Biobank (499,808 participants; years of baseline surveys: 2006-2010; latest mortality follow-up: November 2013; 7995 deaths). Cumulative survival was estimated by applying calculated age-specific HRs for mortality to contemporary US age-specific death rates. EXPOSURES: A history of 2 or more of the following: diabetes mellitus, stroke, myocardial infarction (MI). MAIN OUTCOMES AND MEASURES: All-cause mortality and estimated reductions in life expectancy. RESULTS: In participants in the Emerging Risk Factors Collaboration without a history of diabetes, stroke, or MI at baseline (reference group), the all-cause mortality rate adjusted to the age of 60 years was 6.8 per 1000 person-years. Mortality rates per 1000 person-years were 15.6 in participants with a history of diabetes, 16.1 in those with stroke, 16.8 in those with MI, 32.0 in those with both diabetes and MI, 32.5 in those with both diabetes and stroke, 32.8 in those with both stroke and MI, and 59.5 in those with diabetes, stroke, and MI. Compared with the reference group, the HRs for all-cause mortality were 1.9 (95% CI, 1.8-2.0) in participants with a history of diabetes, 2.1 (95% CI, 2.0-2.2) in those with stroke, 2.0 (95% CI, 1.9-2.2) in those with MI, 3.7 (95% CI, 3.3-4.1) in those with both diabetes and MI, 3.8 (95% CI, 3.5-4.2) in those with both diabetes and stroke, 3.5 (95% CI, 3.1-4.0) in those with both stroke and MI, and 6.9 (95% CI, 5.7-8.3) in those with diabetes, stroke, and MI. The HRs from the Emerging Risk Factors Collaboration were similar to those from the more recently recruited UK Biobank. The HRs were little changed after further adjustment for markers of established intermediate pathways (eg, levels of lipids and blood pressure) and lifestyle factors (eg, smoking, diet). At the age of 60 years, a history of any 2 of these conditions was associated with 12 years of reduced life expectancy and a history of all 3 of these conditions was associated with 15 years of reduced life expectancy. CONCLUSIONS AND RELEVANCE: Mortality associated with a history of diabetes, stroke, or MI was similar for each condition. Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity

    Association of Cardiometabolic Multimorbidity With Mortality.

    Get PDF
    IMPORTANCE: The prevalence of cardiometabolic multimorbidity is increasing. OBJECTIVE: To estimate reductions in life expectancy associated with cardiometabolic multimorbidity. DESIGN, SETTING, AND PARTICIPANTS: Age- and sex-adjusted mortality rates and hazard ratios (HRs) were calculated using individual participant data from the Emerging Risk Factors Collaboration (689,300 participants; 91 cohorts; years of baseline surveys: 1960-2007; latest mortality follow-up: April 2013; 128,843 deaths). The HRs from the Emerging Risk Factors Collaboration were compared with those from the UK Biobank (499,808 participants; years of baseline surveys: 2006-2010; latest mortality follow-up: November 2013; 7995 deaths). Cumulative survival was estimated by applying calculated age-specific HRs for mortality to contemporary US age-specific death rates. EXPOSURES: A history of 2 or more of the following: diabetes mellitus, stroke, myocardial infarction (MI). MAIN OUTCOMES AND MEASURES: All-cause mortality and estimated reductions in life expectancy. RESULTS: In participants in the Emerging Risk Factors Collaboration without a history of diabetes, stroke, or MI at baseline (reference group), the all-cause mortality rate adjusted to the age of 60 years was 6.8 per 1000 person-years. Mortality rates per 1000 person-years were 15.6 in participants with a history of diabetes, 16.1 in those with stroke, 16.8 in those with MI, 32.0 in those with both diabetes and MI, 32.5 in those with both diabetes and stroke, 32.8 in those with both stroke and MI, and 59.5 in those with diabetes, stroke, and MI. Compared with the reference group, the HRs for all-cause mortality were 1.9 (95% CI, 1.8-2.0) in participants with a history of diabetes, 2.1 (95% CI, 2.0-2.2) in those with stroke, 2.0 (95% CI, 1.9-2.2) in those with MI, 3.7 (95% CI, 3.3-4.1) in those with both diabetes and MI, 3.8 (95% CI, 3.5-4.2) in those with both diabetes and stroke, 3.5 (95% CI, 3.1-4.0) in those with both stroke and MI, and 6.9 (95% CI, 5.7-8.3) in those with diabetes, stroke, and MI. The HRs from the Emerging Risk Factors Collaboration were similar to those from the more recently recruited UK Biobank. The HRs were little changed after further adjustment for markers of established intermediate pathways (eg, levels of lipids and blood pressure) and lifestyle factors (eg, smoking, diet). At the age of 60 years, a history of any 2 of these conditions was associated with 12 years of reduced life expectancy and a history of all 3 of these conditions was associated with 15 years of reduced life expectancy. CONCLUSIONS AND RELEVANCE: Mortality associated with a history of diabetes, stroke, or MI was similar for each condition. Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity
    • …
    corecore